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Abstract

This study is concerned with the establishment of the frequency equation of a combined system consisting of a simply

supported beam and an in-span helical spring–mass, considering the mass of the helical spring. After obtaining the ‘‘exact’’

frequency equation of the combined system, a Dunkerley-based approximate formula is given for the fundamental

frequency. The frequency equation of a simpler system is obtained as a special case. The frequency equations are then

numerically solved for various combinations of the physical parameters. Calculated results are also compared with finite

element solutions. Further, comparison of the results with the massless spring case reveals the fact that neglecting the mass

of the spring can cause considerable errors for some combinations of the physical parameters.

r 2006 Elsevier Ltd. All rights reserved.
1. Introduction

Various vibrating elastic systems may be modeled as Bernoulli–Euler beams to which one or several helical
spring–mass systems are attached. Some of a great number of publications on this subject are given in Refs.
[1–6]. The common aspect of all these works is that the mass of the helical springs is not taken into account.
Although it is a well-known fact since Rayleigh that the mass of a linear spring can be taken into account
approximately if one third of the spring mass is added to the mass at the end of the spring, it has been observed
that the degree of the effects of the massless spring assumption on the numerical values of the eigenfrequencies
in more complicated combined systems had not been investigated in the literature. As a first step to cover this
gap, in Ref. [7], the frequency equation of a classical combined system is derived consisting of a cantilevered
beam to the tip of which is attached a helical spring–mass system, the novelty being that the helical spring is
modeled as a longitudinally vibrating elastic rod [8]. The frequency equation obtained is solved numerically
for various non-dimensional mass and spring parameters. Comparison with massless spring case reveals that
neglecting the mass can lead to serious errors for some parameter combinations. As an extension of this study,
ee front matter r 2006 Elsevier Ltd. All rights reserved.
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www.elsevier.com/locate/jsvi
dx.doi.org/10.1016/j.jsv.2006.01.027
mailto:gurgozem@itu.edu.tr


ARTICLE IN PRESS
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the present study deals with the determination of the frequency equation of a Bernoulli–Euler beam simply
supported at both ends, to which is attached in-span a longitudinally vibrating elastic rod with a tip mass,
representing a helical spring–mass system with mass of the helical spring considered. The principal aim is to
underline once more the importance of the consideration of the mass of the helical spring for some parameter
combinations and to supply the design engineers working in this area with the ‘‘exact’’ frequency equation of
the combined system under investigation which can be thought of, for example, as a simple model of an engine
elastically mounted on a structural element. Further, the frequency equation of the reduced system is
established in which the free end of the longitudinally vibrating rod is fixed. Frequency equations obtained are
solved for various non-dimensional mass and spring parameters and the results are compared with the
massless spring case as well as with FE solutions and Dunkerley estimations. The ‘‘errors’’ are given, to a great
extent, in graphs. It is seen that not taking into account the mass of the helical spring can lead to considerable
errors for some parameter combinations.

2. Theory

2.1. Derivation of the frequency equation of the system in Fig. 1

The problem to be investigated in the present note is the natural vibration problem of the mechanical system
shown in Fig. 1. It consists of a simply supported Bernoulli–Euler beam to which an axially vibrating rod with
tip mass M is attached in-span. Axially vibrating rod with tip mass corresponds to a conventional helical
spring–mass system. It is assumed that this combined system vibrates only in the plane of paper. The physical
properties of the system are as follows: The length, mass per unit length and bending rigidity of the beam are
L1, m1, E1I1 whereas the corresponding quantities and the axial rigidity of the rod are L2, m2, E2A2,
respectively. It is to be noted that E2A2/L2 corresponds to the spring constant of the helical spring.

The planar bending displacements in the regions to the left and right of the in-span attachment of the rod
with tip mass M are denoted as w1 (x1,t) and w3 (x1,t), whereas the axial displacements of the rod are denoted
as w2(x2,t) where x2 ¼ 0 corresponds to the attachment point of the rod to the beam. w2ðx2; tÞ is actually a
‘‘relative’’ displacement of the rod, with the matching condition w2ð0; tÞ ¼ 0. w1(x1,t), w2 (x2,t) and w3 (x1,t) are
assumed to be small.

In order to obtain the equations of motion of the system, Hamilton’s principleZ t1

t0

dðT � V Þdt ¼ 0 (1)
M

L2

ηL1

w3(x1,t)w1(x1,t)

x1
x2

w2(x2,t) E2A2;m2

E1I1;m1

L1

Fig. 1. Vibrational system under study: simply supported beam carrying in-span an axially vibrating rod with tip mass.
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will be applied, where T and V denote the kinetic and potential energies of the system, respectively. The total
kinetic energy

T ¼ T1 þ T2 þ T3 þ T4 (2)

consists of the following parts:

T1 ¼
1

2
m1

Z ZL1

0

_w2
1ðx1; tÞdx1; T2 ¼

1

2
m1

Z L1

ZL1

_w2
3ðx1; tÞdx1, (324)

T3 ¼
1

2
m2

Z L2

0

½ _w2ðx2; tÞ þ _w1ðZL1; tÞ�
2 dx2; T4 ¼

1

2
M½ _w1ðZL1; tÞ þ _w2ðL2; tÞ�

2 (526)

the meanings of which are evident.
The potential energy consists of three parts, two of bending and the other due to axial displacements

V ¼ V1 þ V 2 þ V 3, (7)

where

V 1 ¼
1

2
E1I1

Z ZL1

0

w00
2
1ðx1; tÞdx1; V2 ¼

1

2
E1I1

Z L1

ZL1

w00
2
3ðx1; tÞdx1; V 3 ¼

1

2
E2A2

Z L2

0

w0
2
2ðx2; tÞdx2.

(8210)

In the above formulations, dots and primes denote partial derivatives with respect to time t and the position
co-ordinate x1 or x2, respectively. After putting expressions (2) to (10) into Eq. (1) and carrying out the
necessary variations, the following equations of motion of the beam portions and rod are obtained:

E1I1w
{v
1 ðx1; tÞ þm1 €w1ðx1; tÞ ¼ 0, (11)

E2A2w002ðx2; tÞ �m2 €w2ðx2; tÞ ¼ m2 €w1ðZL1; tÞ, (12)

E1I1w
{v
3 ðx1; tÞ þm1 €w3ðx1; tÞ ¼ 0. (13)

The corresponding boundary and matching conditions are as follows:

w1ð0; tÞ ¼ 0; w3ðL1; tÞ ¼ 0; E1I1w
00
1ð0; tÞ ¼ 0; E1I1w

00
3ðL1; tÞ ¼ 0, (14217)

Z L2

0

m2 €w2ðx2; tÞ þ €w1ðZL1; tÞ½ �dx2 þM €w1ðZL1; tÞ þ €w2ðL2; tÞ½ � � E1I1 w0001 ðZL1; tÞ � w0003 ðZL1; tÞ
� �

¼ 0,

w2ð0; tÞ ¼ 0; M €w1ðZL1; tÞ þ €w2ðL2; tÞ½ � þ E2A2w
0
2ðL2; tÞ ¼ 0, ð18220Þ

w1ðZL1; tÞ ¼ w3ðZL1; tÞ; w01ðZL1; tÞ ¼ w03ðZL1; tÞ; w001ðZL1; tÞ ¼ w003ðZL1; tÞ. (21223)

Using the standard method of separation of variables, one assumes

wiðxi; tÞ ¼W iðxiÞ cos ot; i ¼ 1; 2; 3 and x3 ¼ x1, (24)

where W iðxiÞ are the corresponding amplitude functions of the beam portions and the rod and o is the
unknown eigenfrequency of the combined system. Substitution of these expressions into the partial differential
Eqs. (11–13) results in the following ordinary differential equations:

W {v
1 ðx1Þ � b4W 1ðx1Þ ¼ 0, (25)

W 00
2ðx2Þ þ g2W 2ðx2Þ ¼ �g2W 1ðZL1Þ, (26)

W {v
3 ðx1Þ � b4W 3ðx1Þ ¼ 0. (27)
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Here, the following abbreviations are introduced:

b4 ¼
o2m1

E1I1
; g2 ¼

o2m2

E2A2
. (28)

Now, the corresponding boundary conditions are

W 1ð0Þ ¼ 0; W 00
1ð0Þ ¼ 0; W 3ðL1Þ ¼ 0; W 00

3ðL1Þ ¼ 0, (29232)

whereas the matching conditions (18–23) give

m2o2

Z L2

0

½W 2ðx2Þ þW 1ðZL1Þ�dx2 �Mo2½W 1ðZL1Þ þW 2ðL2Þ� þ E1I1 W 000
1 ðZL1Þ �W 000

3 ðZL1Þ
� �

¼ 0, (33)

W 2ð0Þ ¼ 0; �Mo2½W 1ðZL1Þ þW 2ðL2Þ� þ E2A2W
0
2ðL2Þ ¼ 0, (34235)

W 1ðZL1Þ ¼W 3ðZL1Þ; W 0
1ðZL1Þ ¼W 0

3ðZL1Þ; W 00
1ðZL1Þ ¼W 00

3ðZL1Þ. (36238)

Here, primes on W iðxiÞ denote derivatives with respect to position co-ordinates xi. The general solutions of
the ordinary differential Eqs. (25–27) are simply

W 1ðx1Þ ¼ C1 sin bx1 þ C2 cos bx1 þ C3 sinh bx1 þ C4 cosh bx1, (39)

W 2ðx2Þ ¼ C5 sin gx2 þ C6 cos gx2 �W 1ðZL1Þ, (40)

W 3ðx1Þ ¼ C7 sin bx1 þ C8 cos bx1 þ C9 sinh bx1 þ C10 cosh bx1, (41)

where C1–C10 are arbitrary integration constants to be evaluated via conditions (29–38).
If these conditions are considered with Eqs. (39–41), a set of 10 homogenous equations for the unknowns

C1–C10 are obtained. In order to obtain nonvanishing solutions for C1–C10, the corresponding determinant of
coefficients has to be equated to zero, which results in the following determinantal equation:

0 1 0 1 0

0 0 0 0 0

0 �1 0 1 0

0 0 0 0 0

� cos b̄Z sin b̄Z cosh b̄Z sinh b̄Z 1
a22b̄
ð1� cos gL2Þ þ aM b̄ sin gL2

� sin b̄Z � cos b̄Z � sinh b̄Z � cosh b̄Z 0

0 0 0 0 a11b̄
2
sin gL2 � cos gL2

sin b̄Z cos b̄Z sinh b̄Z cosh b̄Z 0

cos b̄Z � sin b̄Z cosh b̄Z sinh b̄Z 0

� sin b̄Z � cos b̄Z sinh b̄Z cosh b̄Z 0

������������������������������
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0 0 0 0 0

0 sin b̄ cos b̄ sinh b̄ cosh b̄

0 0 0 0 0

0 � sin b̄ � cos b̄ sinh b̄ cosh b̄
1

a22b̄
sin gL2 þ aM b̄ cos gL2 cos b̄Z � sin b̄Z � cosh b̄Z � sinh b̄Z

1 0 0 0 0

a11b̄
2
cos gL2 þ sin gL2 0 0 0 0

0 � sin b̄Z � cos b̄Z � sinh b̄Z � cosh b̄Z

0 � cos b̄Z sin b̄Z � cosh b̄Z � sinh b̄Z

0 sin b̄Z cos b̄Z � sinh b̄Z � cosh b̄Z

������������������������������

¼ 0, ð42Þ

where the following non-dimensional parameters are introduced:

b̄ ¼ bL1; m̄21 ¼
m2L2

m1L1
; ak ¼

E2A2=L2

48E1I1=L3
1

; aM ¼
M

m1L1
; gL2 ¼ b̄

2 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m̄21=48ak

p
,

a11 ¼
aMffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

48akm̄21

p ; a22 ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

48akm̄21

p . ð43Þ

The roots of the transcendental frequency equation above give us the dimensionless frequency parameter b̄
and therefore by considering Eq. (28), the eigenfrequencies of the system in Fig. 1.

Having obtained the frequency equation of the general system in Fig. 1 it is reasonable to obtain numerical
results and make comparisons with those systems which correspond to limit cases of the mechanical
system in Fig. 1. Recognizing that m̄21 denotes the ratio of the mass of the rod to that of the beam, it is
clear that the limit m̄21! 0 corresponds to the simplified system in Fig. 2 for k ¼ E2A2=L2. However,
it is not possible to obtain it simply by taking the limit m̄21! 0, as expected. The frequency equation of this
simplified system can be found in Ref. [9] and is given here in notation of the present paper, with
k ¼ E2A2=L2:

sinðZb̄Þ sin½ð1� ZÞb̄�
sin b̄

�
sinhðZb̄Þ sinh½ð1� ZÞb̄�

sinh b̄
¼

2

b̄
b̄
4

48ak

�
1

aM

 !
. (44)

As the numerical evaluations have shown that the equation above yields accurate results only in the region
of small aM values up to aM ¼ 0:1, the need arose to rederive the frequency equation of the mechanical system
in Fig. 2. It is given in Eq. (A.1) directly for the sake of completeness on one side and for the benefit of the
design engineers working in this area on the other.

The limit case of M !1 corresponds to the system in Fig. 3, derivation of the frequency equation of which
will be given in the next section.

2.2. Derivation of the frequency equation of the system in Fig. 3

Unfortunately, it is not possible to obtain the frequency equation of this system from that of the system in
Fig. 1 simply by letting M !1 in the frequency equation (42). It can be shown that in the previous boundary
conditions (14–23), conditions (18) and (20) have to be replaced now by the following expressions,
respectively:

m2

Z L2

0

½ €w2ðx2; tÞ þ €w1ðZL1; tÞ�dx2 � E1I1½w
000
1 ðZL1; tÞ � w0003 ðZL1; tÞ� � E2A2w

0
2ðL2; tÞ ¼ 0, (45)
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M

k

ηL1

E1I1;m1

L1

Fig. 2. Vibrational system in Fig. 1 for the limit m̄21 ! 0.

w3(x1,t)w1(x1,t)

x2

w2(x2,t) E2A2;m2

E1I1;m1x1

L2

ηL1

L1

Fig. 3. Vibrational system in Fig. 1 for the limit aM !1.
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w2ðL2; tÞ þ w1ðZL1; tÞ ¼ 0, (46)

whereas the remaining conditions are unchanged. The separation solution (24) leads for the amplitude
functions to

m2o2

Z L2

0

½W 2ðx2Þ þW 1ðZL1Þ�dx2 þ E1I1½W
000
1 ðZL1Þ �W 000

3 ðZL1Þ� þ E2A2W 0
2ðL2Þ ¼ 0, (47)

W 2ðL2Þ þW 1ðZL1Þ ¼ 0. (48)

Substitution of Eqs. (39–41) into the boundary conditions yields a set of 10 homogenous equations for
the C1 � C10. Setting the corresponding determinant of coefficients to zero, results in the following
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frequency equation:

0 1 0 1 0

0 0 0 0 0

0 �1 0 1 0

0 0 0 0 0

� cos b̄Z sin b̄Z cosh b̄Z sinh b̄Z
1

b̄a22
ð1� cos gL2Þ þ

48akgL2

b̄
3

cos gL2

� sin b̄Z � cos b̄Z � sinh b̄Z � cosh b̄Z 0

0 0 0 0 sin gL2

sin b̄Z cos b̄Z sinh b̄Z cosh b̄Z 0

cos b̄Z � sin b̄Z cosh b̄Z sinh b̄Z 0

� sin b̄Z � cos b̄Z sinh b̄Z cosh b̄Z 0

�������������������������������

.

0 0 0 0 0

0 sin b̄ cos b̄ sinh b̄ cosh b̄

0 0 0 0 0

0 � sin b̄ � cos b̄ sinh b̄ cosh b̄

1

b̄a22
sin gL2 �

48akgL2

b̄
3

sin gL2 cos b̄Z � sin b̄Z � cosh b̄Z � sinh b̄Z

1 0 0 0 0

cos gL2 0 0 0 0

0 � sin b̄Z � cos b̄Z � sinh b̄Z � cosh b̄Z

0 � cos b̄Z sin b̄Z � cosh b̄Z � sinh b̄Z

0 sin b̄Z cos b̄Z � sinh b̄Z � cosh b̄Z

�������������������������������

¼ 0. ð49Þ

For getting trial values for the numerical solution of the transcendental frequency equation (42) on the one
hand and for comparison purposes on the other, an approximate formula for the fundamental frequency of
the system in Fig. 1 will be derived in the following section.

2.3. An approximate formula for the fundamental frequency of the system in Fig. 1

According to Dunkerley’s procedure, the mechanical system in Fig. 1 can be thought of the ‘‘sum’’ of three
subsystems shown in Fig. 4. The fundamental frequency o11 of the bare simply supported Bernoulli–Euler
beam in Fig. 4a is

o11 ¼ b̄
2

11

ffiffiffiffiffiffiffiffiffiffiffi
E1I1

m1L
4
1

s
; b̄11 ¼ p. (50)

Making use of the more general expression in Ref. [10], the frequency equation of the second subsystem in
Fig. 4b can be shown to be

tan b̄22 �
1

16akb̄22Z2ð1� ZÞ2
¼ 0. (51)
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 M 

(a) (b) (c)

ηL1 ηL1

k1

k1k2

E2A2;m2

E1I1;m1

L1 L1L1

L2

Fig. 4. Partial systems for the application of Dunkerley’s procedure.
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Once this transcendental equation is solved with respect to the frequency parameter b̄22, the fundamental
frequency o22 of the second system is simply

o22 ¼ b̄22

ffiffiffiffiffiffiffiffiffiffiffi
E2A2

m2L
2
2

s
. (52)

The eigenfrequency of the third system in Fig. 4c can obtained as

o33 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k1k2

Mðk1 þ k2Þ

s
, (53)

where the following spring constants are introduced:

k1 ¼
3E1I1

Z2ð1� ZÞ2L3
1

; k2 ¼
E2A2

L2
. (54255)

According to Dunkerley’s method, the approximate value of the fundamental frequency of the system in
Fig. 1, o1 is obtained via

1

o2
1

¼
1

o2
11

þ
1

o2
22

þ
1

o2
33

. (56)

Substitution of the eigenfrequencies in Eqs. (50), (52) and (53) into Eq. (56) yields after rearrangements

o1 ¼
b̄
2

11ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ðb̄

4

11=b̄
2

22Þðm̄21=48akÞ þ aM b̄
4

11 ð1=48akÞ þ ðZ2ð1� ZÞ2=3Þ
� �q o0, (57)

where

o2
0 ¼

E1I1

m1L
4
1

(58)

is introduced. It is worth noting that b̄22 represents the first root of Eq. (51) for the corresponding Z and ak

values.
It might be thought of deriving also an approximate formula for the fundamental eigenfrequency of the

system in Fig. 3 on the basis of the Dunkerley’s formula. To this end, the mechanical system in Fig. 3 can be
thought of the ‘‘sum’’ of two subsystems shown in Fig. 5. Due to the fact that the fundamental frequencies of
both subsystems cannot be given in an analytical form, but instead, can only be obtained numerically, it is not
possible to speak of the application of the Dunkerley’s formula in the usual sense. Instead, the frequency
equation of the system in Fig. 5a is given in Eq. (A.2).

Using the more general formula in Ref. [10], the frequency equation of the system in Fig. 5b can be
shown to be

tan b̄22 þ 16akZ2ð1� ZÞ2b̄22 ¼ 0 (59)
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E2A2;m2

E1I1;m1
k1

L2k

(a) (b)

ηL1ηL1

L1L1

Fig. 5. Subsystems derived from the system in Fig. 3.
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with

b̄22 ¼ b22L2; b̄
2

22 ¼
o2m2L2

E2A2
, (60)

where ak is given previously in Eq. (43).
The roots b̄22 obtained from Eq. (59) yield via Eq. (60) the eigenfrequencies o of the system in Fig. 5b. On

the other hand, the numerical results obtained from these subsystems constitute via Dunkerley’s formula
indirectly, valuable trial values for the numerical solution of the frequency equation of the reduced system in
Fig. 3 as given in Eq. (49).

3. Numerical results

This section is devoted to the numerical evaluation of the formulas established in the preceding section.
Recognizing that m̄21 ¼ 0 corresponds to the case of the mass of the axially vibrating rod, i.e. helical spring
being zero, it is reasonable to make a comparison with the numerical values resulting from the system in Fig. 2.

The non-dimensional fundamental frequency parameters b̄1 of the system in Fig. 1 are given in Table 1 for
various values of the non-dimensional mass and stiffness parameters aM , m̄21 and ak, where Z ¼ 0:5 is taken.
The values in the first rows indicated by ‘‘P’’ are the numerical values obtained from the numerical solution of
the frequency Eq. (42) for m̄21! 0. These are exactly the same results as those obtained from the frequency
equation corresponding to the mechanical system in Fig. 2, i.e. Eq. (A.1). The rows indicated by ‘‘F’’ are the
results obtained from a finite elements package FINES [11] and rows indicated by ‘‘D’’ are derived via
Dunkerley-based formula (57). For m̄21 ¼ 0:01 and 0.1, the values of b̄1 obtained from Eq. (42), FINES and
Eq. (58) are given in the following rows of Table 1. All numerical calculations were carried out with
MATLAB. In the FE solutions, each of the beam and the rod were modeled using 10 elements.

As expected, the values given in the third rows of each cell which are based on Dunkerley’s formula, are
smaller than those in the first rows, indeed, it is a known fact that the Dunkerley-based values are always
smaller than the actual values. These values constitute very suitable initial values for the numerical solution of
the transcendental Eq. (42) from which the first row values are obtained.

It is natural that the values for m̄21 ¼ 0:01 are smaller than the values which correspond to the massless
spring case, because these correspond to the case with the spring with mass. On the other hand, the values for
m̄21 ¼ 0:1 are smaller than the values for m̄21 ¼ 0:01, because the spring mass is 10 times.

The absolute values of the relative ‘‘errors’’ of the ‘‘P’’ values for the m̄21 ¼ 0-case, with respect to the ‘‘P’’
values for m̄21 ¼ 0:01 and 0:1; respectively are given separately in Fig. 6. The error surfaces are shown in Fig. 6
from bottom to top for m̄21 ¼ 0:01 and 0:1; respectively. It is seen that the error values grow linearly with m̄21,
for example, the error values corresponding to m̄21 ¼ 0:1 are approximately 10 times larger than those
corresponding to m̄21 ¼ 0:01.

Further, Fig. 6 reveals the fact that errors get smaller if one moves along the aM axis, i.e., if aM gets larger
by holding ak constant. On the other side, if ak gets larger by keeping aM fixed, the errors get slightly larger,
as well.
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Table 1

Non-dimensional fundamental frequency parameters b̄1 of the system in Fig. 1 for various values of the stiffness and mass parameters ak,

aM and m̄21, where Z ¼ 0:5 is taken

aM m̄21 ak

0.5 1 1.5 2 2.5 3 5 10

0.5 0 P 2.304807 2.464754 2.523090 2.552556 2.570202 2.581918 2.605164 2.622368

F 2.304808 2.464756 2.523092 2.552558 2.570204 2.581921 2.605166 2.622370

D 2.215370 2.381290 2.452823 2.492946 2.518671 2.536582 2.574414 2.604735

0.01 P 2.299620 2.458815 2.516891 2.546237 2.563815 2.575489 2.598656 2.615808

F 2.299621 2.458816 2.516893 2.546239 2.563817 2.575491 2.598658 2.615811

D 2.210602 2.375932 2.447165 2.487105 2.512706 2.530528 2.568165 2.598320

0.1 P 2.254997 2.408078 2.464083 2.492474 2.509521 2.520861 2.543419 2.560169

F 2.255002 2.408082 2.464087 2.492478 2.509524 2.520865 2.543422 2.560171

D 2.169873 2.330265 2.399002 2.437426 2.462007 2.479096 2.515119 2.543915

1 0 P 1.970968 2.143717 2.215896 2.255032 2.279459 2.296118 2.330261 2.356506

F 1.970969 2.143718 2.215897 2.255033 2.279460 2.296119 2.330262 2.356507

D 1.925386 2.094787 2.171328 2.215370 2.244068 2.264275 2.307603 2.343000

0.01 P 1.968651 2.140823 2.212706 2.251669 2.275984 2.292565 2.326543 2.352658

F 1.968652 2.140824 2.212707 2.251670 2.275985 2.292566 2.326544 2.352659

D 1.923017 2.091958 2.168245 2.212125 2.240712 2.260837 2.303979 2.339214

0.1 P 1.948259 2.115502 2.184894 2.222403 2.245778 2.261705 2.294315 2.319357

F 1.948261 2.115503 2.184895 2.222405 2.245780 2.261706 2.294316 2.319358

D 1.902326 2.067328 2.141448 2.183954 2.211590 2.231019 2.272591 2.306461

1.5 0 P 1.790122 1.958421 2.032281 2.073575 2.099871 2.118056 2.156012 2.185862

F 1.790122 1.958422 2.032282 2.073576 2.099872 2.118056 2.156013 2.185863

D 1.760861 1.925386 2.001207 2.045329 2.074290 2.094787 2.139047 2.175538

0.01 P 1.788705 1.956604 2.030237 2.071388 2.097586 2.115700 2.153503 2.183224

F 1.788705 1.956605 2.030237 2.071389 2.097587 2.115701 2.153504 2.183225

D 1.759343 1.923529 1.999155 2.043150 2.072023 2.094721 2.136564 2.172922

0.1 P 1.776138 1.940556 2.012229 2.052153 2.077519 2.095034 2.131526 2.160160

F 1.776139 1.940557 2.012230 2.052154 2.077520 2.095035 2.131527 2.160161

D 1.745974 1.907205 1.981147 2.024051 2.052161 2.072028 2.114849 2.150067

2 0 P 1.670013 1.832352 1.905377 1.946881 1.973611 1.992245 2.031574 2.062949

F 1.670014 1.832352 1.905377 1.946882 1.973612 1.992246 2.031575 2.062950

D 1.648932 1.807931 1.882007 1.925386 1.953980 1.974277 2.018282 2.054758

0.01 P 1.669018 1.831059 1.903907 1.945296 1.971945 1.990521 2.029716 2.060978

F 1.669018 1.831060 1.903908 1.945297 1.971946 1.990521 2.029717 2.060978

D 1.647839 1.806574 1.880497 1.923775 1.952297 1.972541 2.016425 2.052791

0.1 P 1.660155 1.819590 1.890895 1.931283 1.957236 1.975302 2.013352 2.043632

F 1.660156 1.819591 1.890896 1.931284 1.957237 1.975302 2.013353 2.043633

D 1.638161 1.794589 1.867170 1.909570 1.937473 1.957256 2.000080 2.035501

2.5 0 P 1.581695 1.738471 1.810043 1.851138 1.877794 1.896474 1.936190 1.968184

F 1.581695 1.738471 1.810043 1.851138 1.877794 1.896474 1.936190 1.968185

D 1.565439 1.719343 1.791542 1.833994 1.862052 1.882007 1.925386 1.961469

0.01 P 1.580938 1.737482 1.808912 1.849912 1.876501 1.895131 1.934733 1.966627

F 1.580939 1.737483 1.808912 1.849913 1.876501 1.895132 1.934734 1.966628

D 1.564595 1.718287 1.790361 1.832731 1.860729 1.880640 1.923918 1.959909

0.1 P 1.574193 1.728686 1.798866 1.839038 1.865042 1.883239 1.921852 1.952880

F 1.574194 1.728687 1.798867 1.839039 1.865043 1.883240 1.921853 1.952880

D 1.557106 1.708930 1.779904 1.821547 1.849032 1.868559 1.910950 1.946144

M. Gürgöze et al. / Journal of Sound and Vibration 295 (2006) 436–449 445



ARTICLE IN PRESS

Table 1 (continued )

aM m̄21 ak

0.5 1 1.5 2 2.5 3 5 10

3 0 P 1.512662 1.664519 1.734528 1.775003 1.801387 1.819945 1.859604 1.891777

F 1.512663 1.664519 1.734528 1.775004 1.801388 1.819945 1.859605 1.891778

D 1.499554 1.648932 1.719343 1.760861 1.788352 1.807931 1.850572 1.886128

0.01 P 1.512059 1.663726 1.733617 1.774013 1.800340 1.818855 1.858416 1.890501

F 1.512059 1.663727 1.733618 1.774014 1.800341 1.818856 1.858417 1.890502

D 1.498874 1.648076 1.718381 1.759829 1.787271 1.806813 1.849368 1.884846

0.1 P 1.506667 1.656661 1.725513 1.765210 1.791038 1.809181 1.847882 1.879203

F 1.506668 1.656661 1.725513 1.765211 1.791039 1.809181 1.847883 1.879203

D 1.492819 1.640464 1.709845 1.750679 1.777685 1.796900 1.838698 1.873493

5 0 P 1.333816 1.471095 1.535627 1.573463 1.598380 1.616040 1.654204 1.685641

F 1.333816 1.471095 1.535628 1.573464 1.598380 1.616041 1.654204 1.685642

D 1.326716 1.462473 1.527102 1.565439 1.590925 1.609128 1.648932 1.682300

0.01 P 1.333496 1.470671 1.535136 1.572926 1.597808 1.615443 1.653545 1.684926

F 1.333496 1.470671 1.535137 1.572926 1.597809 1.615443 1.653546 1.684927

D 1.326347 1.462002 1.526570 1.564865 1.590322 1.608503 1.648255 1.681575

0.1 P 1.330628 1.466876 1.530745 1.568122 1.592704 1.610110 1.647673 1.678558

F 1.330628 1.466876 1.530745 1.568122 1.592704 1.610111 1.647674 1.678559

D 1.323050 1.457803 1.521825 1.559754 1.584949 1.602932 1.642223 1.675124

10 0 P 1.123153 1.240869 1.297010 1.330280 1.352363 1.368112 1.402451 1.431100

F 1.123154 1.240870 1.297011 1.330280 1.352364 1.368112 1.402452 1.431101

D 1.120111 1.237115 1.293256 1.326716 1.349033 1.365009 1.400057 1.429566

0.01 P 1.123018 1.240689 1.296801 1.330049 1.352117 1.367853 1.402164 1.430786

F 1.123019 1.240690 1.296801 1.330049 1.352118 1.367854 1.402165 1.430786

D 1.119953 1.236911 1.293024 1.326466 1.348768 1.364734 1.399758 1.429245

0.1 P 1.121806 1.239074 1.294920 1.327980 1.349909 1.365539 1.399592 1.427970

F 1.121806 1.239075 1.294920 1.327980 1.349910 1.365539 1.399592 1.427970

D 1.118533 1.235085 1.290948 1.324220 1.346401 1.362274 1.397082 1.426370

The values in the first rows indicated by ‘‘P’’ are frequency parameters obtained from the solution of Eq. (42). The rows indicated by ‘‘F’’

are the results obtained from FINES and the rows indicated by ‘‘D’’ are from the Dunkerley-based formula (57).
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The interesting fact depicted by Fig. 6 is that neglecting the mass of the helical spring represented in
Fig. 1 by the axially vibrating rod results in larger errors, especially in the small aM and large ak

regions.
As a second numerical application, the fundamental eigenfrequency parameters b̄1 of the system in Fig. 3

are collected in Table 2 for various values of the stiffness parameter ak, where Z ¼ 0:5 is taken again. The
values in the first rows are obtained from Eq. (A.2), corresponding to m̄21 ¼ 0. The next two values
correspond to m̄21 ¼ 0:01 and 0.1, respectively. The relative errors of the m̄21 ¼ 0-case with respect to these
values are given right shifted above them. As before, the error values corresponding to m̄21 ¼ 0:1 are
approximately 10 times larger than those corresponding to m̄21 ¼ 0:01.

It is clearly seen from Table 2 that the mass of helical spring affects the numerical values of the frequency
parameters. The consideration of the own mass of the helical spring leads to smaller frequency parameters, as
expected. The remaining three values are FINES-based solutions corresponding to m̄21 ¼ 0, 0.01 and 0.1,
respectively. It is reasonable that the FINES-based values are somewhat larger than those for m̄21 ¼ 0. Table 2
reveals clearly that errors resulting from not considering the own mass of the helical spring get smaller if ak

gets larger which represents a contrary trend to that seen in Fig. 6.



ARTICLE IN PRESS

Table 2

Non-dimensional fundamental frequency parameters b̄1 of the system in Fig. 3 for various values of the stiffness and mass parameters ak

and m̄21, where Z ¼ 0:5 is taken

ak
0.5 1 1.5 2 2.5 3 5 10

3.470452 3.722474 3.928871 4.104587 4.258048 4.394514 4.827545 5.513735

�0.001642 �0.001616 �0.001592 �0.001568 �0.001544 �0.001521 �0.001430 �0.001218

3.464752 3.716457 3.922617 4.098152 4.251472 4.387831 4.820643 5.507019

�0.016407 �0.015975 �0.015687 �0.015435 �0.015198 �0.014969 �0.014098 �0.012092

3.413511 3.663008 3.867240 4.041234 4.193334 4.328731 4.759488 5.447061

3.470470 3.722499 3.928905 4.104629 4.258097 4.394571 4.827636 5.513912

3.464770 3.716482 3.922650 4.098193 4.251520 4.387887 4.820733 5.507194

3.413553 3.663049 3.867284 4.041284 4.193391 4.328794 4.759580 5.447229

The values in the first rows are obtained from equation (A2), corresponding to m̄21 ¼ 0. The next two values correspond to m̄21 ¼ 0:01 and
0.1. The right shifted values above them are the relative ‘‘errors’’ of the m̄21 ¼ 0-case with respect to these values. The last three values are

FINES-based solutions corresponding to m̄21 ¼ 0, 0.01 and 0.1, respectively.

Fig. 6. The relative ‘‘errors’’ of the m̄21 ¼ 0-case with respect to the ‘‘P’’ values in each cell for various values of the stiffness and mass

parameters ak, aM and m̄21, where Z ¼ 0:5 is taken. The lower and upper surfaces correspond to m̄21 ¼ 0:01 and 0.1, respectively.
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4. Conclusion

Many actual systems in the real life are modeled in the technical literature as Bernoulli–Euler beams subject
to various supporting conditions with helical spring–mass additions. However, in these applications the helical
springs are frequently assumed to be massless. The system investigated in the present study is made up of a
simply supported beam to which a helical spring–mass is attached in-span. In order to account for the own
mass of the helical spring, it is modeled as a longitudinally vibrating elastic rod. The frequency equation of the
above-combined system is derived. Further, the frequency equation of the reduced system resulting for the tip
mass going to infinity is established as well. The frequency equations obtained are then numerically solved for
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various combinations of the physical parameters. Comparison of the numerical results with the massless
spring case reveals the fact that neglecting the mass causes considerable errors for some combinations of the
physical parameters and thus, it is quite reasonable to consider the mass of the helical springs in order to
obtain more realistic eigenfrequencies of the combined system.
Appendix A

0 1 0 1 0

0 �1 0 1 0

0 0 0 0 sin b̄

0 0 0 0 � sin b̄

sin b̄Z cos b̄Z sinh b̄Z cosh b̄Z 0

sin b̄Z cos b̄Z sinh b̄Z cosh b̄Z � sin b̄Z

cos b̄Z � sin b̄Z cosh b̄Z sinh b̄Z � cos b̄Z

� sin b̄Z � cos b̄Z sinh b̄Z cosh b̄Z sin b̄Z

� cos b̄Z sin b̄Z cosh b̄Z sinh b̄Z cos b̄Z

��������������������������
0 0 0 0

0 0 0 0

cos b̄ sinh b̄ cosh b̄ 0

� cos b̄ sinh b̄ cosh b̄ 0

0 0 0 �1þ aM

48āk
b̄
4

� cos b̄Z � sinh b̄Z � cosh b̄Z 0

sin b̄Z � cosh b̄Z � sinh b̄Z 0

cos b̄Z � sinh b̄Z � cosh b̄Z 0

� sin b̄Z � cosh b̄Z � sinh b̄Z aM b̄

���������������������������

¼ 0. ðA:1Þ

0 1 0 1

0 �1 0 1

0 0 0 0

0 0 0 0

sin b̄Z cos b̄Z sinh b̄Z cosh b̄Z

cos b̄Z � sin b̄Z cosh b̄Z sinh b̄Z

� sin b̄Z � cos b̄Z sinh b̄Z cosh b̄Z

� cos b̄Z� 48āk

b̄
3 sin b̄Z sin b̄Z� 48āk

b̄
3 cos b̄Z cosh b̄Z� 48āk

b̄
3 sinh b̄Z sinh b̄Z� 48āk

b̄
3 cosh b̄Z

������������������������
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0 0 0 0

0 0 0 0

sin b̄ cos b̄ sinh b̄ cosh b̄

� sin b̄ � cos b̄ sinh b̄ cosh b̄

� sin b̄Z � cos b̄Z � sinh b̄Z � cosh b̄Z

� cos b̄Z sin b̄Z � cosh b̄Z � sinh b̄Z

sin b̄Z cos b̄Z � sinh b̄Z � cosh b̄Z

cos b̄Z � sin b̄Z � cosh b̄Z � sinh b̄Z

�����������������������

¼ 0, ðA:2Þ

where āk ¼ k=ð48E1I1=L3
1Þ is introduced.
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